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What is SEAR ?

• SEAR stands for

Surfactant Enhanced Aquifer Remediation

• SEAR involves the injection of surfactants to recover

NAPL-contaminants by either enhanced solubilization

or mobilization due to interfacial tension reduction.
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Soaps
Sulfates
Sulfonates
Phosphates
Sulfosuccinates

Ethoxylated alcohol
Ethoxylated sorbitan fatty ester
Sulfoxides

Amine oxides
Amine salts
Quaternary ammonium

Imidazoline
Betaines
Sulfobetaines
Amino acid
Lecithins

Anionics

Nonionics

Cationics

Amphoterics

Surfactants

Surfactant Ionic Type Classification
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C14 EO3-sulfate
(linear alcohol)

C14 EO3-sulfate
(C4 branch at the #2 carbon)

C14 PO3-sulfate
(C4 branch at the #2

carbon; propylene oxide
instead of ethylene oxide)

Types of Alcohol Ether Sulfate Surfactants
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C14 EO3
HLB = 7.7

C14 EO7
HLB = 11.9

C14 EO14
HLB = 14.9

Examples of Nonionic Structures

Alcohol Ethoxylates
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Surfactants are
surface active agents.
They are molecules
composed of two
differing parts:  a
lyophobic tail and a
lyophilic head.  This
structure leads to the
molecule's interesting
behavior.

Sodium Dihexyl Sulfosuccinate

(Di-1,3-Dimethyl Butyl Sulfosuccinate, Sodium Salt)
Trade Name: Aerosol MA
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Where m+n = 10 - 11

Hydrophobic Tail Hydrophilic
Head

Custom Designed Surfactant
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• Surfactants can enhance contaminant solubilization

-
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8 wt.% Sodium Dihexyl Sulfosuccinate, 4 wt.% IPA

How Surfactants Work: Solubilization



SEARSEAR Surfactant Selection and Bench-Scale Testing 9

• Surfactants reduce interfacial tensions thereby
allowing NAPL to be recovered by mobilization

Interfacial Tension 
at 23°C, dynes/cm

Hill AFB DNAPL-water ~ 9

MCB Camp Lejeune DNAPL-water ~ 10

4% MA, 8% IPA, 9,350 mg/L NaCl, TCE 0.02

8% MA in Hill AFB Source Water, Hill AFB DNAPL 0.2

4% MA, 4% IPA, 11.250 mg/L NaCl, Hill AFB DNAPL 0.01

4% MA, 25,000 mg/L NaCl, PCE 0.14

How Surfactants Work: Mobilization
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Comparison of Chun Huh Predicted and
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DNAPL Mobilization
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Critical SEAR Remediation Variables

• Microemulsion phase behavior
• Interfacial tension
• Surfactant adsorption
• Viscosities
• Densities
• Mass transfer and diffusion
• Surfactant biodegradation
• Polymer compatibility and properties
• Cost and availability of chemicals
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Surfactant Selection Criteria

• Phase behavior
• Solubilization potential
• Environmental acceptability
• Viscosity of surfactant solutions
• Coalescence behavior
• Transport characteristics in permeable media
• Sorption characteristics
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Myths and Misconceptions

• Mass transfer effects limit contaminant solubilization
by surfactant

• Surfactants reduce aquifer permeability
• Performance affected by surfactant sorption
• Cannot reduce saturation to less than 2–3%
• Lowering IFT will induce downward DNAPL

mobilization
• Can avoid mass transfer limitations by adding

cosolvent
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Myths and Misconceptions (cont.)

• Can avoid reduction in aquifer permeability by using
surfactants that do not form gels/emulsions and liquid crystals

• Can minimize surfactant sorption by using anionic surfactants
• Achieved 0.035% during the 1996 AFCEE demonstration
• Achieved 0.03% during the 1996 AATDF demonstration
• Can use neutral buoyancy SEAR to minimize downward

mobilization
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Review of Surfactant Behavior

Description of Microemulsions
• Thermodynamically stable and swollen micellar

solutions should not be confused with
macroemulsions

• Forming stable microemulsions rapidly is cornerstone
of application of surfactants for NAPL recovery
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Winsor Type I Behavior

– Oil-in-water microemulsion

– Can solubilize significant volume of
contaminant

– Usually associated with solubilization
type remediation regimes

TCE

Surfactant Phase Behavior
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Winsor Type II Behavior

– Water-in-oil microemulsion

– Surfactant lost to the NAPL

– Should be avoided in EOR and
SEAR operations

Water

Surfactant Phase Behavior (cont.)
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Phase Behavior Experiments

• Phase behavior experiments
– Measure contaminant solubilization
– Measure coalescence/equilibration time
– Determine microemulsion viscosities

• Specific surfactants can be tailored for specific
NAPLs, such as in MCB Camp Lejeune and Naval
Station Pearl Harbor
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Aqueous Phase

Nonaqueous Phase

Microemulsion Phase

Type I Type III Type II

To effect a transition from Type I-III-II
• Increase electrolyte
• Add heavy alcohols
• Reduce temperature
• Increase surfactant tail length

Surfactant Phase Behavior (cont.)
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Volume Fraction Diagram
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1,000 mg/L NaCl at 23°C

Sodium Dihexyl Sulfosuccinate with TCE
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Microemulsion Viscosities

% IPA NaCl, wt% Solubilization, mg/L Viscosity, cp
4 0.67 0 2.6
4 0.5 140,000 5.5
4 0.65 163,000 8.1
4 0.67 257,000 7.9
4 0.69 325,000 7.5

8 0.58 0 2.8
8 0.4 152,000 5.2
8 0.5 178,000 5.3
8 0.55 193,000 7.2
8 0.57 229,000 4.6
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Microemulsion Density
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Ternary Diagram Phase behavior of Alfoterra 123-4POSO4Na with 
Chevron LNAPL (P-I2-45) at 500 ppm Ca++
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Microemulsion Viscosity
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4% by Weight Alfoterra 145-4-PO Sulfate™, 16% by Weight IPA,
PCE, and Calcium Chloride at 25°C

Volume Fraction Diagram
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Comparison of GC Measured and Volumetric
Estimates of Contaminant Solubilization
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Effect of Surfactant Hydrophobe Length on Optimal
Salinity and Optimum Solubilization Parameter
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Contaminant Solubilization at Different Temperatures
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Equivalent Alkane Carbon Number vs. Optimal Salinity
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Equilibrium Behavior of Microemulsions

• The most important and widely neglected selection
criterion for surfactant solutions is rapid coalescence
to a classical microemulsion when mixed with NAPL

• Liquid crystals, gels, and emulsions are common with
surfactants and very undesirable because they can
cause slow equilibration, high viscosity, plugging, and
high retention in the soil
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Equilibrium Behavior of Microemulsions (cont.)

• Co-solvents can be used very effectively and
inexpensively to eliminate this problem with a good
surfactant with a branched hydrophobe

• The phase behavior must be carefully and accurately
observed as a function of all pertinent variables, such
as temperature and electrolyte content

• When classical phase behavior criteria are met,
sorption is so low that it is negligible, and mass
transfer is so rapid that local equilibrium on a field
scale can be achieved
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Ln(Cs-C) = Ln(Cs) - kbt

Non-Equilibrium Processes and Implication
Batch Tests:  Effects of Surfactant Type on Kb
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Experiment NAPL Mass Balance Tracers
DW#2 PCE 0.0046 --
DW#3 PCE -0.0009 0.005
DW#4 TCE 0 0.005
DK1 TCE 0.004 0.016
DW#5 JP4 -- --
JP4#2 JP4 0.023 0.035
DK4 TCE 0.01 0

POLYTCE#1 TCE -0.0023 0.0001
POLYTCE#2 TCE 0.0038 0.001
POLYTCE#3 TCE -0.0024 0.0002
HILLOU2#7 DNAPL -0.0038 0.0002
HILLOU2#8 DNAPL -- 0.0015

Soil Column Results
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Experiment NAPL Initial K Darcy Final K Darcy
DW#2** PCE 15.3 1.5
DW#3 PCE 7.3 6.9
DW#4 TCE 8.3 7.1
DK1 TCE 4.5 2.2
DW#5** JP4 7.1 --
JP4#2 JP4 8.8 8.6
DK4 TCE 6.5 3.2
POLYTCE#1 TCE 5.8 4.9
POLYTCE#2 TCE 4.4 4.2
POLYTCE#3 TCE 6.8 6.2
HILLOU2#7 DNAPL 5.9 4.5
HILLOU2#8 DNAPL -- 7.7

Soil Column Results (cont.)
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• Increases viscosity of surfactant formulation
• Improved sweep efficiency
• Reduce remediation time and amount of

surfactant needed for chemical flood

Flow without polymer Flow with polymer

Flow Flow

Non-Uniform
Fluid Front

Uniform
Fluid Front

Porous
Media

Porous
Media

Viscosity Measurements:
Mobility Control Using Polymer
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4% Sodium Dihexyl Sulfosuccinate, 8% IPA, Trichloroethylene
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Comparison of Solubilization and Mobilization
Remediation Regimes
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Normalized Tritium and 14C Concentrations
for HILLOU2#8
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Commercial Availability of SEAR Surfactants

• One size does not fit all
• Commercial production of surfactants for specific SEAR

applications requires certain considerations
– Availability of hydrophobes & intermediates
– TSCA inventory (PMN’s, R&D exemptions)
– Economics
– Environmental & safety regulatory questions

• Alfoterra?  CONDEA’s product line for SEAR
– Branched alcohol propoxylate sulfates
– Tailored for contaminant and site conditions
– MCB Camp Lejeune, Naval Station Pearl Harbor, future use at other

sites
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Effects of Surfactant Structure on Biodegradation

• The concept of biochemical infallibility (what Nature
synthesizes, Nature also degrades): ability to degrade
surfactants is related to their structures/chemical groups
being analogous to natural substances

– Branching of hydrophobe decreases biodegradation rates
– Propoxylation decreases biodegradation rates compared to

equivalent degrees of ethoxylation
– Sulfonates (carbon to sulfur bond) are more difficult to break than

sulfates (carbon to oxygen to sulfur bond)
– Ester linkages between hydrophobe and hydrophilic groups are

easily broken
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Effects of Surfactant Structure on Biodegradation

• Biodegradation requiring oxidative attack (e.g., oxygenase
activity) will not occur readily in anoxic subsurface
environments (e.g., LAS, Dowfax?)

• Desirable that biodegradation intermediates exhibit less
microbial toxicity than the parent compound (alkyl phenol
ethoxylates are examples of this problem)

• Purposeful design of a SEAR surfactant to maximize
biodegradation may result in a poor performer:
Balance between performance and biodegradation is
important
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Treatability Above-Ground

• To recycle or not to recycle………………...?
• Above-ground surfactant treatment technologies that

directly or indirectly relate to surfactant structure
– Micellular enhanced ultrafiltration (MEUF): CMC is important
– Biological treatment
– Surfactant precipitation
– Chemical destruction: hydrolysis, oxidation

(requirement for labile groups)
– Phase separation
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It is essential that optimization of surfactant
for performance does not create another

environmental problem.

Conclusions on Structure vs. Performance

• Use of anionics (do not sorb as much to sediments)
• Soluble at concentrations & temperature of SEAR (nature of

hydrophile is important)
• Matching hydrophobe with NAPL contaminant (e.g., HLB)
• Surfactants that disrupt structure are best for microemulsions

of NAPL (e.g., branching, PO)
• Ability to tailor surfactants is useful
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Summary and Conclusions

• SEAR is a very viable technology in remediating
NAPL-contaminated soils

• If the proper screening techniques for surfactant
selection are used residual NAPL saturations as low
as 0.03% can be achieved in both lab and field tests

• New advances have allowed us to custom-design
surfactant molecules for specific contaminants
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Any Questions?


